Multimodal sensory processing in Caenorhabditis elegans
نویسندگان
چکیده
منابع مشابه
The sensory cilia of Caenorhabditis elegans.
The non-motile cilium, once believed to be a vestigial cellular structure, is now increasingly associated with the ability of a wide variety of cells and organisms to sense their chemical and physical environments. With its limited number of sensory cilia and diverse behavioral repertoire, C. elegans has emerged as a powerful experimental system for studying how cilia are formed, function, and ...
متن کاملEvidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans.
Dauer formation in Caenorhabditis elegans is induced by chemosensation of high levels of a constitutively secreted pheromone. Seven genes defined by mutations that confer a dauer-formation constitutive phenotype (Daf-c) can be congruently divided into two groups by any of three criteria. Group 1 genes (daf-11 and daf-21) are (1) strongly synergistic with group 2 genes for their Daf-c phenotype,...
متن کاملHierarchical sparse coding in the sensory system of Caenorhabditis elegans.
Animals with compact sensory systems face an encoding problem where a small number of sensory neurons are required to encode information about its surrounding complex environment. Using Caenorhabditis elegans worms as a model, we ask how chemical stimuli are encoded by a small and highly connected sensory system. We first generated a comprehensive library of transgenic worms where each animal e...
متن کاملSensory regulation of male mating behavior in caenorhabditis elegans
C. elegans male mating behavior comprises a series of steps: response to contact with the hermaphrodite, backing along her body, turning around her head or tail, location of the vulva, insertion of the two copulatory spicules into the vulva, and sperm transfer. By ablation of male-specific copulatory structures and their associated neurons, we have identified sensory structures and neurons that...
متن کاملAntagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.
Caenorhabditis elegans shows chemoattraction to 0.1-200 mM NaCl, avoidance of higher NaCl concentrations, and avoidance of otherwise attractive NaCl concentrations after prolonged exposure to NaCl (gustatory plasticity). Previous studies have shown that the ASE and ASH sensory neurons primarily mediate attraction and avoidance of NaCl, respectively. Here we show that balances between at least f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Biology
سال: 2018
ISSN: 2046-2441
DOI: 10.1098/rsob.180049